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Bounds for the uniform norm of the errors in the second and third derivatives of
cubic interpolating splines—on—splines are derived. These bounds encompass the
case when approximate rather than exact derivatives are used at the endpoints.
Furthermore, it is shown that, for a uniform mesh, spline-on-spline techniques lead
to an accuracy of one additional order at the knots. Results of some computational
experiments are given.

1. INTRODUCTION

A popular method of calculating derivatives of a function from its values
on a given set of knots uses splines. In this paper we discuss an alternative
strategy—the “spline~on—spline” technique. There is computational evidence
that such a procedure yields better results than the traditional process using
a single spline. For example, Ahlberg et al observed [4] that
computationally the spline—on—spline method gives excellent results for the
second derivative of sin x.

The spline—on—spline technique can be described as follows: suppose we
have an interval [a, b] partitioned by a mesh z. In order to map a given
function x(¢) into an approximant of its first derivative, we interpolate the
function by a cubic spline s(¢) over the mesh, requiring s(¢) to take on slopes
0,,0, at the respective endpoints of [a, b]. Then x(z) is replaced by the
spline’s derivative: x(z) — (d/dt) s(t). A repetition of the procedure gives us
an approximant of x"(t), and so on through higher orders of the derivative if
desired.

The aim of the paper is to furnish error bounds for the spline—on—spline
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method. These are given by inequalities (29), (30), (31) below. They attain a
simple form provided the mesh # is uniform, i.e.,

|x(p)(t)__s (t)| <_1_ \pﬁ _9_ 7 ||x(3+j)|| h3+j7p + N\ _9_ e |d| hj-p
T4 =m0 2 2 a7

where s, stands for the approximant to x'P, h is the mesh gauge and d, is the
two-dimensional vector of errors in the prescription of endpoint slopes for
interpolation purposes; thus,

|d)| = max{|x? (@) — o], | (b) — 0P |}.

In the second section of the paper we give the following appraisal of
“discretized error”:

12 . . b .
X0(0) = sl <5 X 3 X R4 X 3 | 1
j=1 =1

Here ¢, is any one of the knots (the mesh being assumed uniform).
In the last section results of some numerical experiments are presented.

2. UNiFORM NORM ESTIMATES

Let R™ be the real, m-dimensional Euclidean space with norm |&|=
max, ¢;¢m|&il-

For a fixed mesh ma=t<t, <---<t,=b, let hy=¢,—1t,_,, i=
1,2,..,n, h=max,,h;, k=min, ;, h;, |=min{h,, h,}, and § = h/k.

Also, for i=1, 2,..., n — 1, denote

Ai=h (it h )7 w=1-4

Let C be the space Cla, b]. For an integer p >0, let C? = {x: x” € C};
also, let C? be the space of all x.€ C such that xX?~" € C has a bounded
derivative x” on [a, b] — ', with n’ = {¢,, t,,..., t,_,}. Moreover, if x(¢) is
defined and bounded on [a, b] — 7/, we let || x|| =sup{|x(¢)|: t € [a, b] — 7'}

Define an operator ¥:C X R>—C? as follows: for x€ C and
0 = (0,,0,) € R?, let ¥(x,0) be the unique cubic spline associated with x
and the mesh 7z such that [(“(x, 0)]'(t,) = 0, and [¥(x, 0)]'(¢,) = 0,.

Furthermore, for x € C we put (x) = (x(t,), x(¢,)) € R?, and, for x € C',
Sx = % (x, (x'))—the complete cubic spline.

To simplify the notation in subsequent considerations, we put s =.%(x, o),
si=s9(), i=0,1,.,n j=0,1,2, and s =(s),s,..s)ER""",
j=0,1,2. Thus, s? = x(¢,) for i=0, 1,...,n and so=0,, s, =0,.
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Lemma 1. (a) For x€C!,
s <3 )% + o).
(b) For x € C and a uniform mesh 7,

Is' | < 3R 5" + o).

Proof. (a) Fori=1,2,.,n— 1 we have [4, p. 13]

'lsl l+2s +,U, 1+1_3'1h ‘(S _sl 1)+3:U1 l+'(sl+1_ ?)

with s§ =0,, sy =0,. For i =2, 3,..,n—2, (3) yields

205t < Al b+ 3188 = s )1+ 3y iz Gy = D)
<Is'+3 max [k st sl ).

Similarly, for i =1, n — 1 we get from (3),

2151 < s+ 3 max |57 (s? =52, + o
20551 <Is' 43 max (A0 =50 )+l

Hence, for each i =0, 1,..., n,

2s{|< ls'|+3 _max ]h,f‘(s?—s?_,)|+lal.

Consequently,

25" < |s’|+3 max lh,-“(sf-’—s?_l)lﬂol,

.....

so that

' 1< 3 max [h; (52— s )l + ol

.....

(D

2)

3)

4)

However, since s!=x(¢;), it follows from the mean-value theorem that
hi Y(si —si_y) = x'(&,) for some &, € (¢;_,, ;). Hence, |h; (s} —s;_ )| < || x']]

for each i. Putting this into (4) proves (1).

(b) If the mesh z is uniform, then 4, = h and A; = u; = 3 for all i, and

(3) becomes

1.1 1 i 0
2811+ 28; + 2S1+l =3h~ (74, —si_))
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Using the same argument as before and the fact that |s), , —
inequality (2) follows.

s?*,|<2|s°\,

LEMMA 2. Let x € C and 1 i< n; then for each t € [t, |, t;] we have
|s"(6) < max{3h; " |57 —si_ i [si_ b s} (5)
and

"1 <3 max{3h; " [0}, 3k s Isi ol [s}])- (6)

Proof. Clearly, on I;,=t¢,_,,t;] we have
s(8) =i\ M(0) + s{N(1) + 57 Pi(t) + 5, Qi(0), (M
where
M) =h7(h + 26— 26, )t — 1),
N =h7(h;— 2t + 2t)(t — t;_,)%,
P1)= hi_z(t — Lo — ti)z’
QY =h; " (t— 1)t —1; )"

(8)

A simple calculation shows that, on I;, M <0, N; >0, M} + N/ =0 and
IN!| < (3/2) h;'. Also, P] vanishes at ¢; and t;,_, + (1/3) h;, Q' vanishes at
t;_,and t,— (1/3) h;, and P{(¢;_,) = Q}(¢;) = 1. Thus, by (7),

s'=(s{—si_) N[ +5;_ P +5; Q. ®

Denoting the maxima in (5) and (6) by a and a*, respectively, it follows
from (9) that

|s"()] < asup{g(r): t € I} (10)
and
|s"(D < a* sup{g*(1): t € I}, (11)
where
#(6) = 3h; [N ()] + | P (1) + [ Qi () (12)
and

$*(1) = 3h N (O + | P{ ()] + 1 Qi (D). (13)
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To estimate the above suprema we can assume without loss of generality
that ¢,_, =0 and ¢, = 3. Then

o()=1-13 on |0, 1],
=—1+%-%7* on]l,2]

=—1+3%—%* on|23],

and ¢(0) = $(3/2) = $(3) = L, 6(1) = ¢(2) = 7/9, ¢"(0) = ¢'(3/2) = ' (3) = 0.
From this it follows that ¢ < 1 on I,. Hence, (10) confirms (5).

By a similar argument we conclude easily that ¢* < 3/2 on I,, which, by
virtue of (11), proves (6).

In the following, let D denote the differentiation operator.

Lemma 3. (a) Let x € C. and o € R; then
D (x, o) <3 |lx"[| + 0. (14)
(b) Let xEC, 0 € R?, and let n be uniform; then
I D5 (x, 0)| < 3h ™" {|x][ + o). (15)
Proof. (a) As above, h~'|s? —s]_ || <||x'|. Thus, by Lemma?2, (5)
and Lemma 1, (1) we have for any ¢ € [q, b],
[s"(Ol <max{3 [x"[, 3]|x"[| +[o]} =3 [|x"|| + 0]

which proves (14).

(b) Since % is a linear operator on C X R? it follows that
F(x,0)=s5+s5, with s=.(x,0) and s,=.%(0,0). Now, by (2),
Is'| <3k ||x] because |s°| < ||x]l, and by (6),

|s'(0) < 3 max{3h~" [|xfl, 387" |x[l} = 3h 7" [|x |

for all ¢ € [a, b]. Hence, ||s'|| < (9/2) A" || x|

Similarly, for s, we have by (2), |s|<|o]. Thus, by (5), |sk(t)| <
max{0, o]} = |o| for every t € |a, b]. Consequently, |si| <|o].

Finally, by the triangle inequality, | D5 (x,0)|<|s']|+ skl <
(9/2) h~ || x|| + |o|, which proves (15).

Remark 1. Linearity of .¥ and Lemma 3 show readily that, for any
X€EC’ and 6 € R?,

I1D((x, 0) = Sx)l <[o — (7). (16)
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Since .¥(x, o) — Sx vanishes at the nodes ¢; of =, it follows by integration
that
| (x, 0) — Sx|| <o — (x")| h. (17

Note that similar results of this kind may be found in [1].
LEMMA 4. Let x € C2 and o € R?; then
1D, o) <3 [[x"] + 617" o — (x"). (18)
Proof. We have (4, p. 11]
WSt 25t Asi = (19)
fori=1,2,.,n—1, and

2 2
255+ 81 ="rg,

20
si—l+2srzl:rn’ ( )
where
ri:6(hi+hi+1)_’{hi‘+1l(s?+l -—S?)—h,-’l(s?-—s?,,)} (21
fori=1,2,..,n—1, and
ry=6h7 AT (5" — s —a,},
0 1 { 1 (l 0) 1} (22)

ry= 6hn_l{an —hn-l(sg —53_1)}-

Denoting x; = x(t;)= sy and x/=x'(¢,), i=0, l..., n, it follows by Taylor’s
theorem that

Xipr = X ] 4+ ThE XD, Sinr €t
Xi_y=x;— h;x} + 3hi x" (&), &€y t)
for i=1, 2,..,n— 1. Hence, by (21),
re=3Ch + b ) X" E ) + (€D
consequently,
[r] < 3)x"], i=12,..,n—1. (23)

Moreover, x, = x, + h,x{ + (1/2) hix"(&,) for some &, € (¢, t,), and conse-
quently,

Fo= 6h;](x¢’) —0;) + 3x"(&)-
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Thus

7ol 31X + 617" o — (x"); (24)
similarly,

lr,] <3| x"]|+ 617" o — (x"). (25)

On the other hand, (19) and (20) yield
21831 ISt + )y i=1,2,n—1,
2ol <|87| +rgls (26)
2(s3 | <Is?[+]r,.
Hence, using (23)-(25), we get from (26),
s? [ <3 x" )|+ 617" o — (x"). 27

Finally, since s” is a polygon having vertices at the nodes ¢;, we have
ls”|| =|s?|. This concludes the proof.

LEMMA 5. Let x € C. and 6 € R*; then
D> (x, 0)| < 6k~ flx" || + 12k~ """ o — (x")). (28)

Proof. Noting the fact that s” is constant on each interval (¢,¢;,,)
(being a derivative of the polygon s”), (28) follows immediately from (27).

For the proof of the theorem we will need the following result due to Hall
and Meyer [3].

PROPOSITION 1. Let x € C*; then, for j=0, 1,2, 3,
I DI — 8) x|l < H; | x| h*~,
where
3 I »
Hy=——- H =——- H2=_8’v H3='2—(ﬁ+ﬁ ):

THEOREM 1. Let p be an integer with 1 <p<3, and let x€ C**7,

@, sy w, € R Denote
s, =D5(x,w)),

s, = DS | DS (x, w,), w,],
5, =DY (DYDY (x, w,), w,], w;},
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and let d;= (x) — w, for j= 1,..., p. Then
(a) fOVpZ 1,

1
I = syl <5 X B+ 1d 29)
(b) forp=2,
" 1 O3 L 2@y 2 -1
{|x —szl|<2—4l|x I A +g XTIk +ldy| + 18171 |d,],  (30)
(¢) forp=3,
1 9 63
o |l y® R [ )] 2, Y 4 271
7 = 55| 5 IO B+ X9 1+ = ) %k
+|d3|+181"|d2|+108(k"+l")l"|dl|. (31

If, in addition, the mesh 7t is uniform, then

AV
N2 | H-p
x> (2> | B,

» _ RS \,, 9 iy p3eimp
L P e B P TR
] _

ji=

(32)

Proof. (a) Using Proposition 1 and Lemma 3, we have by the triangle
inequality an linearity of .%,

1x" =5, | <1 DCe = Sx)| + | D[ (x, (x7)) = (x, @)

=[1DU=8)x|+[|DF(0,{x") —w ) < 714—HX“’II h +(x") — |

which proves (29).
(b) By linearity of .%" we have the identity x” —s, =4, + 4,, where

A, = D|Dx — ¥ (Dx, w,)], A,=DF|D(x — ¥ (x, w,)), 0].
Due to Proposition 1 and Lemma 3,
14| I D[Dx — S(Dx)]|| + | D[~ (Dx, {x")) — & (Dx, w,) ||

=D = S)Dx)|| + | DF (0, (x") — @) € 2—14 xR + () — w, |
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Moreover, Lemmas 3 and 4 imply that
1420 <3 D*(x — L (x, w )| < 31D (x — Sx)j
+ 3 || D2 (x, {x")) — . (x, @ )|
=3[D*(I —8) x| + 3] DL (0, {(x") ~ w))]
SENx N A% + 18171 (') — .
Introducing this into || x” — s,|| < |4, + ||4,], (30) follows.
(c) We have the identity x”’ — s, =B, + B, + B,, where
B, =D|D*x — .¥(D*x, w,)],
B,=D¥{D|Dx — ¥ (Dx, w,), 0},
B,=D.¥{D¥|D(x —.%(x,»,)), 0], 0}.

Using Proposition 1 and Lemmas 3 and 4, we get

IBA<IU = $) D3] +[DFO, ) )]
S XA + 1) = 0. ()

Similarly,
1Bl < 3[|D*[Dx — #(Dx, w,)]|
<3| D*I — S) Dx|| +3 | D> (0, x" — w,)
SF X A? + 18171 [(x") — o, .
To estimate || B, |}, put u = D(x — .¥(x, w,)). Then
I1B5ll < 31D [u, O] < 3{3 [[u” || + 617" [Cu”)l}. (34)
Howevevr,
lu"=11D*(x — % (x, o <D’ = S) x|| + | D*F(0, (x') — w))|
B+ BNV A+ 1267117 [(x') — w, | (35)
On the other hand,
[ < [|lw'l| =[D*(x — F(x, )| < | D*U — §) x||
+ D20, (x') ~ w N <3 x LA+ 67 [(x) — | (36)
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Introducing (35) and (36) into (34), we obtain

9 27
1B < | B+ 8" k4 W X9+ 10817 6 417 i) (3T)

Finally, it is easy to see that the coefficient {---} of || x*“’|| in (37) does not
exceed (63/4) K’k ~". Thus, making use of the inequality |x"" — s,|| <||B,| +
| B, + || B ||, we arrive readily at (31).

To prove (32), we use Proposition 1, the above identities for x
(p=1,2,3), and repeatedly apply inequality (15) in Lemma 3. Since the
procedure is straightforward, we omit the details.

o _
SP

Remark 2. An alternative spline—on-spline approximant to x© is
furnished by §, = D>.¥[D.%(x, w,), ,]. The argument used in the proof of
Theorem 1 will convince us that for x € C* and w,, w, € R?, we have

. 3 21 - o~
||x‘”—s3||<-8~||x(5’||h2 _+__4_||x(4)”h2k '+ 6! 1|<x ) — @,

+36(k~" + 17D I KXY — o,

3. DiSCRETE TYPE ESTIMATES

In this section we will assume that the mesh 7 is uniform. For x € C we
put £ = (x(ty), X(t,)oess X(¢,)) € R

Define the operator &: R™*' X R* » R"*' as follows: for
E= (&, &y &) ERM™! and 0 = (0,,0,) € R?, let (¢, 0) = (s'), where s is
the unique cubic spline associated with # such that s(t,)=¢, for i =0, 1,...,n
and s'(t,)=o0,, s'(t,) =0,. o

Observe that, for x € C, Z(%, 0) = (' (x, 0)).

Clearly, & is a linear operator on R"*' X R?, and by Lemma 1 we have

|2@¢ o) <3¢ h™" +]o|. (38)

We will use the following assertion (for the proof see (2, p.212], or |5,
p. 69]).

PROPOSITION 2. Let x € C* and let the mesh n be uniform. Then

D@ )~ () <5 I (39)
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Note that (38), (39), linearity of & and the triangle inequality imply that
for x € C* and 0 € R,

9(5,0)~ () <o X B +]o— (x1) (40)

THEOREM 2. Let p be an integer with 1 <p<4, and let x € C**?,
Wy gy W, € R?. Moreover, let the mesh n be uniform. Denote
m =2 w)
=D[Z(% ), w,],
Ny =222 (x, w)), w,], 03},
N, =2 (21|22 (%, 0,), w,], 03}, W],

and let d;= (xV) — w; for j=1,..., p. Then

1 . . . P . )
|(x(’”) ’7p| —66 3p—i ”x(4+1) ” h4+/‘p + l‘ 3p-i |dj| Wr, (41)

J=1

u[/jwa

Proof. For p=1, inequality (41) reduces to (40). Furthermore, by virtue
of the linearity of & the following equalities are true:

— (N =2[Z(E w,)~ ()0 + 2 [(), 0] — (), (42)
1 — (M) = 212 (D (%, w,) — (), 0], 0} + Z{Z (), 3] — (). 0}
+ 2@, w3} — GO, 43)
N A~
te— (G = 2(2(2|2 (% w,) — (), 0],01,0]
+ D|D{D (), ,] — (57, 0}, 0]
N TN P
£ DD, w5} — G, 0 + 2 (G, @] — (). (44)

Applying the triangle inequality to (42) through (44) and using (38) with
(40), we obtain (41) for p =2, 3, 4. Hence the proof.

Remark 3. An alternative approximant to (x*’) can be constructed as

folows: for x€C% let y=D¥[D¥(x,{x')),{x")] and put
z=%(, (x®)). Then it can be easily shown that

N 3
R IIX‘”’ 4%+ < l1x 1 A
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4. RESULTS OF SOME NUMERICAL EXPERIMENTS
Let us define the maximal normalized errors at the knots in the second

and fourth derivative of a given function x computed by the spline—on—spline
technique as follows:

N
6 = x|~ <y — ()

with
w =", w,=(x"),
and
4) [CONTE - /(}
e =xM[71 - 12") — ),

where #, and z are defined in Theorem 2 and Remark 3, respectively.

Also, to test the suitability of our technique to points other than the knots,
we define the maximal normalized error in the second derivative at the set of
points 7,=¢;+ (1/3)h, i=0, 1,..,n— 1 by

E¥ = |x"|7" - max [{D*x — D5 (DSx, x"D}(r).

The results of some computational experiments are given in Table I for the
functions e', e** and sin 5¢ with 0 ¢ < 1. We have chosen for A the values
10~", 10~ 2 and 1073, It is evident from the table that ¢'*, ' and £’ are,
respectively, O(h*), O(h) and O(h?), which agrees with our theoretical error
bounds.

TABLE [

ERRORS IN THE SECOND AND FOURTH DERIVATIVES

k e e sin 5¢

107" 3.219%x10°* 4900x 10°% 9.100%x 107*
e® 1077 4326 x107* 4.735x 1077 5548 x 1077
107% 4613x107'2 5496%x 107'® 5580x 10°'°

107" 2987x107°? 2239 x 1077 2.790 X 1077
e 107 2.395x 107 1.337x 107 1224 x 107°
107% 2333x107°  1.220x107*  1.243x 10°*

107" 9.535x10°%  8759%x107* 1757 x 10~°
&% 107 1.011x 1078 1.232x 107¢ 1.760 x 10~¢
107 9296 x 1072 1.269x 107° 1.760 x 107°
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