
JOURNAL OF APPROXIMATION THEORY 36, 213-225 (1982)

Error Bounds for Spline-on-Spline Interpolation
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Bounds for the uniform norm of the errors in the second and third derivatives of
cubic interpolating splines-on-splines are derived. These bounds encompass the
case when approximate rather than exact derivatives are used at the endpoints.
Furthermore, it is shown that, for a uniform mesh, spline-on-spline techniques lead
to an accuracy of one additional order at the knots. Results of some computational
experiments are given.

1. INTRODUCTION

A popular method of calculating derivatives of a function from its values
on a given set of knots uses splines. In this paper we discuss an alternative
strategy-the "spline-on-spline" technique. There is computational evidence
that such a procedure yields better results than the traditional process using
a single spline. For example, Ahlberg et af. observed [4 J that
computationally the spline-on-spline method gives excellent results for the
second derivative of sin x.

The spline-on-spline technique can be described as follows: suppose we
have an interval [a, bJ partitioned by a mesh n. In order to map a given
function x(t) into an approximant of its first derivative, we interpolate the
function by a cubic spline set) over the mesh, requiring set) to take on slopes
Gl' G 2 at the respective endpoints of [a, b]. Then x(t) is replaced by the
spline's derivative: x(t) -> (dldt) set). A repetition of the procedure gives us
an approximant of xl/(t), and so on through higher orders of the derivative if
desired.

The aim of the paper is to furnish error bounds for the spline-on-spline
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method. These are given by inequalities (29), (30), (31) below. They attain a
simple form provided the mesh n is uniform, i.e.,

where sp stands for the approximant to x(Pl, h is the mesh gauge and dj is the
two-dimensional vector of errors in the prescription of endpoint slopes for
interpolation purposes; thus,

In the second section of the paper we give the following appraisal of
"discretized error":

Here t j is an~ one of the knots (the mesh being assumed uniform).
In the last section results of some numerical experiments are presented.

2. UNIFORM NORM ESTIMATES

Let R m be the real, m-dimensional Euclidean space with norm I~ I=

maxI <;;i<;m I~jl·
For a fixed mesh n:a=to<tl<···<tn=b, let hj=ti-tj_ l , i=

1,2,..., n, h = maxI <;;j<;n hj' k = minl<;j<;n hi' 1= min {hi' hn}, and fJ = h/k.
Also, for i = 1,2,..., n - 1, denote

Let C be the space C[a, b]. For an integer p ~ 0, let CP = {x: x(P) E C};
also, let C~ be the space of all x E C such that x(P - I) E C has a bounded
derivative x(P) on [a,b] -n', with n' = {tl' tz,..·, tn_I}' Moreover, if x(t) is
defined and bounded on [a, b] - n', we let Ilxll = sup{lx(t)l: t E [a, b] - n'}.

Define an operator Y: C X R Z
--+ CZ as follows: for x E C and

0= (01' oz) E R 2, let Y(x,o) be the unique cubic spline associated with x
and the mesh n such that [Y(x, o)]'(to) =0 1 and [Y(x, o)]'(tn) = oz.

Furthermore, for x E C we put (x) = (x(to)' x(tn)) E R Z, and, for x E C I ,

Sx = Y(x, (x'»)--the complete cubic spline.
To simplify the notation in subsequent considerations, we put s = Y(x, 0),

. VJ' . . .. .) n+ \s1 = s (t i ), 1=0, 1,..., n, J = 0, 1,2, and S1 = (s~, sl\ ,... , sln E R ,
j=O, 1,2. Thus, s7=x(tj) for i=O, l,...,n and s~=oI' s~=oz'
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LEMMA I. (a) For x E C~,

IsII < 311x'll + lal·

(b) For x E C and a uniform mesh n,

Proof (a) For i = 1,2,... , n - I we have [4, p. 13]
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(I)

(2)

with s~ = aI' s~ = a2 • For i = 2, 3,... , n - 2, (3) yields

2\sfl < A; Isf-II +,u; Isf+ II + 3A; \h;-'(s7 - s7_,)\ + 3p; Ih;-+II(s7+ 1- s7)1
<lsII+3 max Ih;-I(s7-s7_,)I.

i=2, ... ,n-l

Similarly, for i = I, n - I we get from (3),

2Is:I~lsll+3 max Ih;-I(s7-s7_,)I+lal l,
i= 1.2

2Is~_II~lsII+3.max Ihi1(s7-s7_1)1+la21.
l=n-l.n

Hence, for each i = 0, I,... , n,

2Isfl~lsII+3. max Ih;-I(s7-s7_i)I+lal.
1= 1, .... n

Consequently,

2Isll~lsll+3 max Ih;-I(s7-s7_,)I+lal,
;= I ..... n

so that

Is II<3. max Ih;-I(s7-s7_1)1+lal.
1=1 ..... n

(4)

However, since s7 = x(/;), it follows from the mean-value theorem that
h;-I(s7 - s7_1) = x' (c;;) for some c;; E (/;-1' t;). Hence, 1h;-I(s7 - s7-1)1 ~ II xiii
for each i. Putting this into (4) proves (I).

(b) If the mesh n is uniform, then h; = h and A; = p; = 4for all i, and
(3) becomes
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Using the same argument as before and the fact that IS~+ 1 - S~-II <21 SO I,
inequality (2) follows.

LEMMA 2. Let x E C and 1 <i <n; then for each t E [t;_1' til we have

and

Is' (t)1 <max {3h ill s~ - s~_II, Is:_II, Is: II (5)

Is' (t)1 <~ max {3h i- 1 Is~_I I, 3hi lis ~ I, Is:_1 I, Is: II. (6)

Proof Clearly, on Ii = t i -1' til we have

where

Mi(t) = hi 3(h i + 2t - 2t;_I)(t - ty,

Ni(t) = hi- J(h i - 2t + 2ti)(t - ti_1)2,

Pj(t) = hi 2(t - ti_I)(t - ti)2,

Qi(t) = hi 2 (t - t;)(t - ti_ I )2.

(8)

A simple calculation shows that, on Ii' M[ <0, N[ ? 0, M[ +N[ =°and
IN!I«3/2)hi l

• Also, P! vanishes at ti and ti - I +(1/3)hi, Q'i vanishes at
t;_1 and ti -(1/3)hi, and P!(ti_ l ) = Q!(ti) = 1. Thus, by (7),

, (0 0) N' + I P' + 1Q's = Si -Si_1 i Si-I i Si i· (9)

Denoting the maxima in (5) and (6) by a and a*, respectively, it follows
from (9) that

and

where

and

Is'(t)1 <a sup{~(t): t E 1;1

Is/(t)1 <a* sup{~*(t): t E 1;1,

~(t) = !hi IN! (t)1 + [P!(t)1 + [Q!(t)1

~*(t) = ~hi IN!(t)1 + IP!(t)[ + IQ!(t)l·

(10)

(11 )

(12)

(13)
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To estimate the above suprema we can assume without loss of generality
that ti _ 1 = 0 and ti = 3. Then

¢(t) = 1 - ~t2

= -1 + Jt - !t2

= -1 + 1t - ~t2

on 10,1],

on [1, 2J,

on [2, 3J,

and ¢(O) = ?(3/2) = ?(3) = I, ~(1) = ?(2) = 7/9, f(O) = ~'(3/2) = ¢/(3) = O.
From this it follows that ¢ < 1 on Ii' Hence, (10) confirms (5).

By a similar argument we conclude easily that ¢* < 3/2 on Ii' which, by
virtue of (11), proves (6).

In the following, let D denote the differentiation operator.

LEMMA 3. (a) Let x E C~ and a E R 2
; then

II DY(x, a)1I <311x'il + lal·

(b) Let x E C, (J E R 2
, and let n be uniform; then

II DY(x, a)1I < 'ih- I IIxll + lal·

(14)

(IS)

Proof (a) As above, h-lls~-s~_II<llx'll. Thus, by Lemma 2, (5)
and Lemma 1, (1) we have for any tEla, b J,

Is'(t)1 < max{31Ix'lI, 311x'il + lal} = 311x'il + lal

which proves (14).

(b) Since ,9 is a linear operator on C X R 2, it follows that
Y(x, a) = s + s* with s =Y(x, 0) and s* = ,YeO, a). Now, by (2),
Is J I<3h- 1 /lxll because /sol<llxll, and by (6),

Is'(t)1 < i max{3h- 1 IIxll, 3h- 1 IIxll} = 1h - ' Ilx II

for all t E [a, b]. Hence, II s'll < (9/2) h-I Ilxli.
Similarly, for s* we have by (2), Is~I<lal. Thus, by (5), Is*<OI<

max {O, I(J I} = IaI for every t E [a, b]. Consequently, II s ~'" < I(J I·
Finally, by the triangle inequality, IIDY(x, a)1I < II s' II + II s* II <

(9/2) h- 1 IIxll + lal, which proves (15).

Remark 1. Linearity of ,s,? and Lemma 3 show readily that, for any
xE C' and aER 2

,

IID(Y(x, a) - Sx)1I <la - (x')I. (16)
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Since cy(x, a) - Sx vanishes at the nodes t i of n, it follows by integration
that

IIY(x, a) - Sxll <la - (x')1 h.

Note that similar results of this kind may be found in [1].

LEMMA 4. Let x E C~ and a E R 2
; then

IID 2y(x, a)11 <311x"ll + 6/- 1 la - (x')I·

Proof We have [4, p. 11]

for i= 1,2,..., n - 1, and

2s~ + si = ro'

S~_I + 2s~ = rn ,

where

(17)

(18)

(19)

(20)

(22)

for i= 1,2,..., n - 1, and

ro = 6hll{hll(s~ - s~) - a l },

r n = 6h;; I(an - h;; I(s~ - s~ _I)}'

Denoting Xi = x(tJ = s~ and x; = x'(tJ, i = 0, 1,... , n, it follows by Taylor's
theorem that

x j+1= Xj +hj+IX! + ~h;+ IX"(¢i+ I)'

X i _ 1 = x j - hjx; + ~h7 x" (c;j),

¢i+ IE (t i , t i + I)'

c;iE(tj_l't j)

for i = 1,2,..., n - 1. Hence, by (21),

r j = 3(h j + hj+ I) -I {hi + Ix"(c;j + I) + hjX"(c;i)};

consequently,

i = 1, 2,..., n - 1. (23)

Moreover, XI = Xo+ hlx~ + (1/2) h;x"(eo) for some eo E (10 , II)' and conse
quently,



i = 1,2,..., n - 1,
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Thus

Irol ~ 311x" II +6/- 110 - (x')I;

similarly,

Irnl ~ 3 II x" II + 6/- 1 10- (x')/.

On the other hand, (19) and (20) yield

21s;1 ~ Iszl + Iril,

21s~1 ~ Iszl + Irol,
21s~1 ~ Iszl + Irnl·

Hence, using (23}--(25), we get from (26),
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(24)

(25)

(26)

(27)

Finally, since s" is a polygon having vertices at the nodes t i , we have
Ils"lI = Iszl· This concludes the proof.

LEMMA 5. Let x E C; and a E R Z
; then

Proof Noting the fact that s'" is constant on each interval (ti' t i + I)
(being a derivative of the polygon s"), (28) follows immediately from (27).

For the proof of the theorem we will need the following result due to Hall
and Meyer [3].

PROPOSITION 1. Let x E C4
; then, for j = 0, 1, 2, 3,

where

5
H o = 384 '

THEOREM 1. Let p be an integer with 1~ P ~ 3, and let x E C3 + p,

WI ,... , wp E R Z
• Denote

Sl = D.C/(x, WI)'

Sz = DY[DY(x, WI)' w z],

S3 = DY {DY[DY(x, WI)' w z], w 3},
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_ U) ._and let dj - (x ) - W j for} - 1,... , p. Then

(a) for p= 1,

(29)

(b) for p = 2,

(c) for p = 3,

Ilx"'-S311~ 2141Ix(6)llh3+ ~ Ilx(S)llh 2 + 6: Ilx(4)llh2k- 1

+ Id31 + 18/- 1 Idzl + 108(k- 1 + I-I) I-I IdIi- (31)

If, in addition, the mesh 1r is uniform, then

Ilx(P) - spil ~ 2~ j~1 (~ r-J

Ilx(3+J) II h3+J-P +~I ( ~ ) P-J Idjl hi-po

(32)

Proof (a) Using Proposition 1 and Lemma 3, we have by the triangle
inequality an linearity of Y,

Ilx' - sIll ~ IID(x - Sx)11 + IID[Y(x, (x'») - Y(x, wl)]11
1

= IID(I-S)xll+IIDY(O,(x')-wl)11 ~ 24 Ilx(4)11 h3 + I(x') - wll

which proves (29).

(b) By linearity of ,Y we have the identity x" - s2 = A I + A 2' where

A 1= D[Dx - Y(Dx, W z)]'

Due to Proposition 1 and Lemma 3,

A z= DY[D(x - Y(x, WI))' 0].

IIAIII ~ IID[Dx - S(Dx)]11 + IID[Y(Dx, (x"») - ,V(Dx, wz)lll
1

= IID(I - S)(Dx)11 + II DY(O, (x") - wz)11 ~ 24 Ilx(Sl II h3 + I(x") - wzl·
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Moreover, Lemmas 3 and 4 imply that

IIA 2 11 ~ 311D 2(x - Y(x, w l )1! ~ 311D 2(x - Sx)1!

+31ID 2y(x, (x'» - y'(x, wl)11

= 31ID 2
(/ - S) xii + 3I1D 2y(0, (x') - w l )1I

~ ~ Ilx(4) II h 2 + 18/- 1 I(x ' ) - WI I·

Introducing this into Ilx" - s211 ~ IIA III + IIA 211, (30) follows.

(c) We have the identity x'" - S3 = B I +B 2 +B), where

B I = D[D 2x -Y(D 2x, w)],

B 2 = DY{DIDx - Y(Dx, w2 ), O},

B 3 = D,Y {DY[D(x - Y(x, WI»' 0], OJ.

Using Proposition 1 and Lemmas 3 and 4, we get

IIBIII ~ 11(/ - S) D 2xll + II DY(O, (X'II) - w 3)11

~ 2~ Ilx(6) II h 3 + I(x 'll ) - w3 1·

Similarly,

IIB 2 11 ~ 311D 2 [Dx - Y(Dx, w2 )]11

~ 31ID2(/ - S) Dxll + 31ID2,'/(O, x" - w2)11
~ ~ Ilx(5)11 h 2 + 18/- 1 I(x") - w2 1·
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(33)

To estimate liB311, put u = D(x - Y(x, WI»' Then

IIB3 11 ~ 31ID2y[u, 0111 ~ 3{311 u"ll +6/- 1 l(u')II. (34)

However,

Ilu"1! = IID 3(x - Y(x, w1m ~ IID 3
(/ - S)xll + IID 3y(0, (x') - w t )1!

~ HP +P-I) Ilx(4)11 h + 12k- I/- 1 I(x ' ) - WI I· (35)

On the other hand,

l(u/)1 ~ Ilu'li = IID 2(x - Y(x, wl)1I ~ IID 2
(/ - S) xii

+ IID 2y(0, (x') - wl)11 ~ i Ilx(4) II h2 + 6/- 1 I(x') - WI I· (36)
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Introducing (35) and (36) into (34), we obtain

Finally, it is easy to see that the coefficient {... } of Ilx(4) 11 in (37) does not
exceed (63/4) h2k- l

• Thus, making use of the inequality Ilx'lf - s311 ~ II Bill +
IIB 2 11 + IIB311, we arrive readily at (31).

To prove (32), we use Proposition 1, the above identities for x(P) - sp

(p = 1,2,3), and repeatedly apply inequality (15) in Lemma 3. Since the
procedure is straightforward, we omit the details.

Remark 2. An alternative spline-on-spline approximant to X
(3

) is
furnished by 53 = D 2Y[D5;?(x, WI)' w 2 ]. The argument used in the proof of
Theorem 1 will convince us that for x E C5 and WI' W 2 E R2, we have

3 21Ilx(3) - 53 11 ~Sllx (5
) II h 2+ 4 1Ix(4) II h2k~1 + 6/- 1 I(x") - w 21

+ 36(k- 1 + /-1) /-1 I(x') - WI I·

3. DISCRETE TYPE ESTIMATES

In this section we will assume that the mesh 7r is uniform. For x E C we
put x= (X(lo)' x(t I)"'" x(tn )) E R n+ I.

Define the operator 0: R n + 1 X R 2 ~ R n + I as fr>llows: for
~ = (~o, ~1' ••• , ~n) E Rn+ I and a = (al' ( 2) E R2, let 0(~, a) = (s'), where s is
the unique cubic spline associated with 7t such that s(tJ = ~i for i = 0, 1,..., n
and s'(to) = al' s'(tn) = a2 • ________

Observe that, for x E C, 0(x, a) = (Y'(x, a)).
Clearly, 0 is a linear operator on R n + I X R 2

, and by Lemma 1 we have

(38)

We will use the following assertion (for the proof see [2, p.212], or [5,
p.69]).

PROPOSITION 2. Let x E C 5 and let the mesh 7r be uniform. Then

(39)
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Note that (38), (39), linearity of @ and the triangle inequality imply that
for xE C5 and aER 2

,

A- 1
I@(x, 0) - (x')1 ~ 60 Ilx(Sl II h4 + 10 - (x')I· (40)

THEOREM 2. Let p be an integer with 1~p ~ 4, and let x E C4+ P,

(01"'" (Op E R 2. Moreover, let the mesh 7r be uniform. Denote

111 = @(x, (01)'

112 =@[@(x, (0,), (02]'

113 = @{@[@(x, (01)' (02]' (O3}'

114 =@[@{@[@(x, (0,), (02]' (O3}' (04]'

and let dj = (xU» - (OJ for j = 1,..., p. Then

~ 1 P P

l(x(P») -l1p l~ 60 I 3p- j Ilxl 4+j) II h4+j-p + L 3p- j Idjl hj - p. (41)
j~ I j~ I

Proof For p = 1, inequality (41) reduces to (40). Furthermore, by virtue
of the linearity of @ the following equalities are true:

A- A- A- A-

112 - (x") =@[@(x, (01) - (x'), 0] +@[(x' ), (02]- (x"), (42)
~ A- A- A-

113 - (X I3 ») = @{@[@(x, (0,) - (x'), 0], O} +@{@[(x' ), (02]- (x"), O}
A- ~

+@{(X")'(03}-(X(3»), (43)
~ A-

114 - (X(4») =@[@{@[@(x, (01) - (x'), 0], Of, 0]
A- A-

+@[@{@[(X' )'(02] - (x"), Of, 0]
~ ~ ~

+ @[@{(x"), (O3} - (X(3»), 0] + @[(x(3»), (04] - (X(4»). (44)

Applying the triangle inequality to (42) through (44) and using (38) with
(40), we obtain (41) for p= 2, 3, 4. Hence the proof.

./'...
Remark 3. An alternative approximant to (X(4») can be constructed as

folows: for xE C6, let y=DY[DY(x, (x'»), (x")] and put
z = Y(y, (X I3 »). Then it can be easily shown that
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4. RESULTS OF SOME NUMERICAL EXPERIMENTS

Let us define the maximal normalized errors at the knots in the second
and fourth derivative of a given function x computed by the spline-on-spline
technique as follows:

with

WI = (x'),

and
A- ~

e(4) = Ilx(4) 11- 1 • I(z") - (x(4)I,

where 172 and z are defined in Theorem 2 and Remark 3, respectively.
Also, to test the suitability of our technique to points other than the knots,

we define the maximal normalized error in the second derivative at the set of
points r; = t i + (1/3) h, i = 0, 1,..., n - 1 by

€(2)==llx"II-I. ~ax 11D 2x-DY(DSx,(x"»I(rJI.O",,,n-I

The results of some computational experiments are given in Table I for the
functions el

, eSI and sin 5t with 0 ~ t ~ 1. We have chosen for h the values
10 - I, 10 - 2 and 10 - 3. It is evident from the table that e(2), e(4

) and €(2) are,
respectively, O(h 3

), O(h) and O(h 2
), which agrees with our theoretical error

bounds.

TABLE I

ERRORS IN THE SECOND AND FOURTH DERIVATIVES

h e' e 51 sin 5t

10- 1 3.219 X 10-· 4.900 X 10-: 9.100 X 10- 4

ell) 10- 2 4.326 X 10- 9 4.735 X 10- 7 5.548 X 10- 7

IO- J 4.613 X 10- 12 5.496 X 10- 10 5.580 X 10- 10

10- 1 2.987 X 10- 3 2.239 X 10- 1 2.790 X 10- 2

e(4) 10- 2 2.395 X 10- 4 1.337 X 10- 3 1.224 X 10- 3

IO- J 2.333 X 10- 5 1.220 X 10- 4 1.243 X 10- 4

10- 1 9.535 X 10- 6 8.759 X 10- 4 1.757 X IO- J

€(2) 10- 2 1.011 X 10- 8 1.232 X 10- 6 1.760 X 10 6

10- 3 9.296 X 10- 12 1.269 X 10- 9 1.760 X 10- 9
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